APPROXIMATE SOLUTION OF THE EQUATIONS
OF HEAT-EXCHANGER DYNAMICS ON A
DIGITAL COMPUTER

I, P, Simakov and A, E, Solov'ev UDC 536.27

A modification of the method of lines is proposed for the approximate solution of the sys-
tem of partial differential equations describing the thermal dynamics of a multistage
forced-circulation heat exchanger (HE),

A heat exchanger is, in a mathematical sense, one of the most involved of the dynamical links com-
prising a steam-energy installation, An adequate mathematical description of a heat exchanger involves
the study and solution of a nonlinear boundary-value problem for partial differential equations.

The heat exchanger design (Fig.1) for which calculations were made is a "tube-in-a-tube" type, thin-
walled and thermally insulated from the external medium,.

The economizer—evaporator section and the superheated steam section are divided by a separator;
the water is taken from the separator by a pump and fed into the economizer portion of the HE, At the
economizer portion the water undergoes heating to the boiling temperature tg (p) and, farther along, there
is generation of saturated vapor at the evaporator portion, The boundary for onset of boiling of the water
moves with a change in the work mode of the HE,

In deriving the mathematical equations of the HE we make the following conventional assumptions:
there is no heat transfer with the environment; the temperature and speed of the heat~transfer agent is the
same at all points of a cross section; heat conduction in the direction of motion of the heat-transfer agent
is negligibly small in comparison with convective heat transfer; a lumped-parameter description of hydro-
dynamic processes may be assumed since the heat-transfer agent and the water are incompressible media;
heat transfer between the heat-transfer agent and the water in the HE takes place only through the tube
walls; values of the densities, specific heat capacities, and thermal-conductivity coefficients are taken to
be mean integral values over the temperature range of variation considered; the thermal state of the heat-
transmitting tubes through the tube thickness at a given section may, with sufficient accuracy, be character-
ized by a single (mean) temperature,

With these assumptions we may describe the

z(¥) nonstationary working regimes of the HE, when the
X o distribution of the parameters is taken into account,
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Fig.l, Basic HE design arrangement, ty=1,[p(M)]; ©)
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economizer section: z(f) =x =L

(et 2t = =g — (16— T @)
(18w T =y () 03— ) — (G (T — o) )
1y o= 0,2 + kG Ty — 1), ©)

with the corresponding boundary conditions

0,0, 1) =6, (1), 0, (2, V) =0,(z, 1), £, (L, T) =ty (), (7)
L@ T =1(p)
and initial conditions
8,0, ) =6/(x), T:0, )=T2(0), £ (0, Y =4
tLi=6@) (=1,2.

We consider the temperature distribution functions 6, T, and t ¢emperatures of the alloy, the wall,
and the steam—water mixture) to be continuous functions with piecewise-continuous derivatives through the
firgst-order inclusive:

' 8)

ei = 0; (x, T)’ Ti = Ti (X, T)’ tl = tl (x, T)! ts == Z(s [p(T)J i= 1, 2),
excluding the point x = z(r) at which T;(z, ) (i = 1, 2) has finite discontinuities of the first order.
The functions 65(T) and ty, () are assumed to be continuous,

The difficulty of solving this system of partial differential equations (1)-(6) arises in that the bound-
ary z(T), where boiling of the water commences, varies with the time, this variation being defined implicitly
by the initial system of equations and by the system of initial conditions (8) and the boundary.conditions (7).

We obtain the equation for the time-varying boundary of the evaporator section from Eq, (6), which we
consider at the point x = z49(T), Noting that t; = t;[z (), 7], we write down the expression for the total dif-
ferential:
0t dz oty

—dt
0x x=z+o(r) dT 6‘5 X=z +0(1)

dty (2,9, 1) = dr. ©)

The notation z.4(T) (subscript +0) signifies that we are considering the derivative at the point x = z(r), the
evaluation being made from the side of the economizer zone., This needs to be made more precise since
the partial derivative with respect to the water temperature undergoes a discontinuity at the point x = z (1),

Substituting the expression t;/87| from Eq. (9) into Eq. (6), we obtain

x:z_m(r)
dt, ot dz\ | k(G
usie W = Wy — 2 (T — s e (10
dt 5=z, (0 Ix X=z+o<t)( 11 dt)+ (cys)w (T, 1)‘ +o(T) )
At the boundary of the economizer and evaporator portions
t [2(), 1] =4, [p@)]. (11)
From the expression (11) it follows that
dt, A dp ‘ (12)

dv op  dr
Substituting Eq, (12) into Eq, (10), we obtain an equation for the variable boundary for the onset of boiling:

dz dp dr €yshy |
dv oty
Ox |x=z,

1)IX=Z

—w,. (13)
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of temperatures in the HE, tions for linear perturbations,

Following the method of lines [1] we subdivide the economizer and evaporator portions into n and m
equal parts, respectively, the lengths of which are functions of the time:

L—z _ (14)

(W) =i— (=0,..., m. (15)

Henceforth we congider the temperatures of the heat-transfer agent and the wall at "moving" points
on the economizer #q. (14)) and the evaporator (Eq. (15)) portions. Employing the methed of subdivision
of the lines (14), we represent the derivative at the point x = z 4(7) by the difference relation

;

L—z
t |z 4+ ,r)—«t(z,r)
1( n 1 _ tl(x]’ T)Hts (16)
- L—z L—z ) :

n n

ot,
ox

x:z+0(1)

In this case we can write a differential equation connecting the evaporator zone length with the tem-
peratures:

d % . %p— - k2((Gw)1JH [Tl (2: 17) - ts]
_Z _ 14 T CYS N 17
& "ot 7] (=9 "

We now find differential equations the solutions of which determine the temperatures of the heat-transfer
agent and the wall at the "moving" points of the economizer and evaporator portions,

Since all the temperatures of the economizer and evaporator portions (Ty, 6, ty, tg (i =1, 2)), con~
ditionally denoted from now on by ufx(T), T] for brevity, are functions of the coordinate and the time, we
may write the expression for the total differential as

du(xi)‘ dx; dr -+ ou (x;)

du [x,- (T)] N ox dt at

&t (i=0,..., ). (18)

Substituting into Eq. (18) the value of dxi/dT from Eq. (14) for the economizer portion and the values
from Eq, (15) for the evaporator portion, we obtain, respectively:

Ou (x;) _ du(x;)  Ou(xy) (1~L) dz

i=0,..., n)y (19)

o0t dt ox n ) dv
du (Xi) _ du (xi) . ou (Xi) . _L_ . d_Z (L — 0’ e m) <20)
dt dt ox m dt

After substituting for thg partial derivatives 8u(xi)/ o7 in Egs, (1)-(6), and introducing finite difference rela-
tions of the form du/ox|,_, = 685 41, - ul;, 7))/h for Egs. (1)-(5) and 8u/0x]| .y, = (u(>:j+1, T)-ul;, 7))

]

/2h for Eq, (6), which allows us to take into account the effect of varying ts[p(T)] on the distribution of tem-
perature tp., we obtain
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O —Top) (=1,..., m) (21)

diy; Oy 8y, )m (i de ) k(g
e —— w_[ —_—

dt z om o dv - (cvs)a
de,i i(Ty,; — T2,i_1) dz &y (9) ks (q) . .
FEm . e + W(ez,i—T2,i) - W(Tz_,i" ty (i=0,..., m); (22)
=1 [p )]s (23)
as, ; n(0y,;—8,,;,_y | de iy . By ()11 ]
i = () e - A e = 24
ATy, 1Ty —Ty) i\ dz k(G ky (g) -
dt - L —2 (l—“ T) ”ﬁ‘—‘@ﬁ(Tl,i‘t1,i)+ m(el,i_'TLi) (i:()» ey ’7—)§ (25)
dty; (it )N 1— { dz by (GII . i
S a0 (1 D)2 ] + RO ) =1 (26)
Oy dp BGIr oo 4]
de O dv _ (C¥h (L—2)—w (27)
-

dt n [t1 (xp T) — ts]

The initial and boundary conditions applicable here may be written in the form

Oin@ 1) =000 1), f(L, V="4,(1), 1,6 1)="{; (28)
0,0, ) =60, (x), To;(0, ) =Ti;(x), #,;0, x)=1;(x) @9)
i=1,2 j=0,..., n).
In congidering the HE separately it is also necessary to assign the perturbations
05,00, ©) =0,(1), tiu(L, =1 (1), ¢=[i(r), p= const. (30)

The resulting Eqs, (21)-(30) make it possible to carry out a study of the nonstationary working modes
of the HE on a digital computer, by a fourth order Runge- Kufta method, using a standard program,

The initial equations were solved on the Minsk~22 computer with an integration time step of 0.01 sec,
The program was written in the language Diana-2 for the linear perturbations
05,0 =y — byt > 9;,0, 31)

q = 1-DboT = g% p =ayama = const; a;, b; (i =1, 2) are constant quantities,

For the initial state we took the data of the stationary state, obtained from the study of the system of
Egs. (21)-(29) indicated above, The results of the computation are shown in Fig,2.

In making the calculations on the digital computer we subdivided the economizer and evaporator zones
into four equal parts; in addition, we considered the equation for the pipeline of boiler water
Oty Oy (32)
2 L =0, 0 < ps
ot + Wy Ox P
the heat-balance equation for the water volume of the separator, assuming the water level in it to be con-
stant:

df
(cvs)gH. W-Z:_ = G &b, T Gy, evapi’ — G0y fs &

and the steam outflow rate, taking the hypothesis of quasistationarity into account:

2(T)
Il

p—-Y 4L j (T, —t,)dx. (34)

T T )

Results of the HE calculations for the linear perturbations (31) are shown in Fig, 3,

Analyzing the transient processes, there is evidently a tendency towards a "dip" in the steam output
with a sharp decline in the input energy.
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The problem of how to choose the number of subdivision segments to achieve a given accuracy in the
solution depends on the type of the system of equations being solved and the class of functions involved;
this problem requires a special study.

NOTATION

o]

is the relative (with respect to the nominal volume) rate of flow of heat-transfer
agent;

is the wall temperature;

is the temperature of the working body;

is the temperature of the heat-transfer agent;

is the specific heat capacity;

is the density;

is the relative rate of vapor flow;

is the heat-transfer coefficient;

is the pressure;

is the volume;

is the heat-exchange coefficient;

is the thermal conductivity;

is the heat-exchange surface;

is the area;

is the variable length of the evaporator section of the heat exchanger;
is the perimeter;

is the length of the economizer and evaporator sections;
is the wall thickness;

is the space coordinate;

is the height of the level in the separator;

is the mass flow rate;

is the velocity;

S OmMH o HEHN®B P O 4T KM@ RO o T =
=)

T is the time;

h is the integration step;

03, Ty, ty, t5 (1 =1, 2) are, respectively, the temperature of the alloy, wall, and water in the economizer
and evaporator sections, and the temperature of the saturated vapor;

89(0, T) is the inlet disturbance for the alloy;

8y (L, t) is the output temperature of the alloy from the economizer section;

Gpw is the rate of flow of the boiler water;

L5 =T;/0sn;

X =x/4m;

Z(T) is the length of the evaporator section;

Zz is the relative length of the evaporator section; 7 = z/4, 14 m;

T is the relative time, T = T/50 sec;

6y (L, ) is the relative output temperature of the alloy from the economizer section,@i €L,

T) = 6y(L, 7)/269°C.

Subscripts

n denotes a nominal value;
fw  denotes feeding water;
bw  denotes boiler water;

5 denotes the separator;

a denotes heat-transfer agent;

w denotes water;

W denotes the wall;

p denotes the pipeline;

s denotes a saturation line;

1 denotes the economizer section;
2 denotes the evaporator section;
0 denotes the initial conditions,

A tilde denotes relative values,
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